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Abstract. The generalized compact-open topology τC on partial continuous

functions with closed domains in X and values in Y is studied. If Y is a non-
countably compact Čech-complete space with a Gδ-diagonal, then τC is Čech-

complete, sieve complete and satisfies the p-space property of Arhangel’skǐı,

respectively, if and only if X is Lindelöf and locally compact. Lindelöfness,
paracompactness and normality of τC is also investigated. New results are

obtained on Čech-completeness, sieve completeness and the p-space property

for the compact-open topology on the space of continuous functions with a
general range Y .

1. Introduction

The generalized compact-open topology τC on the space of partial continuous
functions with closed domains was introduced by J. Back in [Ba] in connection
with investigating utility functions emerging in mathematical economics. It proved
to be a useful tool in studying convergence of dynamic programming models [Wh],
[La], as well as in applications to the theory of differential equations [BC]. This
new interest in τC complements the attention paid to spaces of partial maps in the
past [Za], [Ku1], [Ku2], [AA], [AB], [BB], [Se], and more recently in [Fi], [St], [KS],
[BCH1], [BCH2], [DN1], [DN2], [HZ1], [HZ2].

Various topological properties of τC have already been established, e.g. separa-
tion axioms in [Ho1], complete metrizability in [Ho2] and other completeness type
properties in [HZ1] and [NZ], respectively; also, in [DN1], [DN2] the authors study
topological properties of spaces of partial maps in a more general setting.

It is the purpose of this paper to continue in this research by investigating Čech-
completeness of τC . In the process, sieve completeness and the p-space property
[Arh] of τC is proved to be equivalent to its Čech-completeness in the most interest-
ing cases, which is much like the situation with the compact-open topology τCO on
the space of continuous functions (see [MN1, MN2]). It is worth noticing however,
that despite the close connection between τC and τCO, properties of these topolo-
gies do not always coincide. On the contrary, in some cases (like Baireness, or weak
α-favorability [HZ1]), the generalized compact-open topology exhibits properties
resembling those of the Fell hyperspace topology τF , which makes τC a true mix-
ture of τCO and τF . In Section 2 we collect some definitions and auxiliary results
for the topologies we are to study. In Section 3, we prove the main results of the
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paper: a characterization of Čech-completeness, sieve completeness and the p-space
property, respectively. Extending a theorem of Holá [Ho2], a full characterization
of complete metrizability of τC is also given. In Section 4, we obtain sufficient
conditions for Čech-completeness, sieve completeness and the p-space property, re-
spectively, of the compact-open topology (C(X,Y ), τCO) for Y with a Gδ-diagonal,
thus generalizing results of McCoy and Ntantu [MN1, MN2]. In Section 5, the re-
lationship between Lindelöfness, paracompactness and normality of τC is explored.
Surprisingly, normality of τC implies its Čech-completeness and the reverse impli-
cation is also true under some restrictions. An application of paracompactness of
τC to continuous extensions of partial functions is given.

2. Preliminaries

Unless otherwise noted, all spaces are nontrivial Hausdorff spaces. If X is a

topological space, then Bc, intB, and B (or B
X

) will stand for the complement,
interior, and closure of B ⊆ X, respectively. Denote by CL(X) the family of
nonempty closed subsets of X, and by K(X) the nonempty compact subsets of X.
For any B ∈ CL(X), and a topological space Y , C(B, Y ) will stand for the space
of continuous functions from B to Y (so-called partial maps). Denote by

P = P(X,Y ) =
⋃
{C(B, Y ) : B ∈ CL(X)}

the family of all partial maps. We will identify a partial map f with its graph
Γ(f) ∈ CL(X × Y ). If Y is a Tychonoff space and cY is a fixed compactification
of Y , then P ⊆ CL(X × cY ), since if (xλ, f(xλ)) is a net in Γ(f) ∈ P converging
to some (x, y) ∈ X × cY , then xλ → x and f(xλ)→ y; further, by continuity of f ,
f(xλ)→ f(x), so y = f(x) and (x, y) ∈ Γ(f).

Define the so-called generalized compact-open topology τC on P as the topology
having subbase elements of the form

[U ] = {f ∈ P : (domf) ∩ U 6= ∅},
[K : I] = {f ∈ P : f(K ∩ (domf)) ⊆ I},

where U is open in X, K ∈ K(X) and I is an open (possibly empty) subset of Y .
We can assume that the I’s are members of some fixed open base for Y , or empty.

The compact-open topology [En, MN1] τCO on C(X,Y ) has subbase elements of
the form {f ∈ C(X,Y ) : f(K) ⊆ I}, where K ∈ K(X) and I ⊆ Y is open.

Denote by τF the so-called Fell topology [Be, KT] on CL(X) having subbase
elements of the form

V − = {A ∈ CL(X) : A ∩ V 6= ∅}

with V open in X, plus sets of the form

(Kc)+ = {A ∈ CL(X) : A ⊆ Kc},

with K ∈ K(X). It was observed by Fell that if X is locally compact, then
(CL(X)∪ {∅}, τF ) is a compact Hausdorff space [Fe]; furthermore, since CL(X) =
X− is an open subspace of (CL(X) ∪ {∅}, τF ), (CL(X), τF ) is locally compact, if
X is. We will use τF to denote the Fell topology on CL(X × cY ) as well as on P.
If L ∈ CL(X × Y ), denote

L[x] = {y ∈ Y : (x, y) ∈ L}
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(i.e. L can be viewed as a multifunction with a closed graph [HM]). Let pX be the
projection map from X × Y onto X, and ω the non-negative integers. For notions
not defined in the paper see [En].

In the following two propositions we explore the relationship between the various
topologies defined in this section:

Proposition 2.1.

(i) X and (CL(X), τF ) embed in (P, τC); further, they embed as closed subsets,
if X is locally compact.

(ii) Y and (C(X,Y ), τCO) embed as closed subsets in (P, τC).

Proof. (i) x 7→ {x} is a closed embedding of X into (CL(X), τF ). Let y ∈ Y
be fixed, and for each A ∈ CL(X) define fA ∈ P via fA(x) = y for all x ∈ A,
then φ : A 7→ fA is an embedding of (CL(X), τF ) into (P, τC). Let f ∈ P be
such that it has at least two distinct values y1 6= y2, and let I1, I2 be Y -open
disjoint neighborhoods of y1, y2, respectively. If X is locally compact, we can find
K1,K2 ∈ K(X) such that f(B ∩K1) ⊆ I1, and f(B ∩K2) ⊆ I2, where B = domf .
Then

f ∈ [K1 : I1] ∩ [K2 : I2] ⊆ P \ φ(CL(X)),

so φ(CL(X)) is closed in (P, τC).
(ii) Assigning to each y ∈ Y the function fy ∈ C(X,Y ), defined via fy(x) = y

for all x ∈ X, sets up a closed embedding of Y into (C(X,Y ), τCO). Moreover,
the identity map i : (C(X,Y ), τCO) → (P, τC) is clearly an embedding, and if
f ∈ P \ i(C(X,Y )) then there is x /∈ domf , so

f ∈ [{x} : ∅] ⊆ P \ i(C(X,Y ));

thus, i(C(X,Y )) is closed in (P, τC). �

Proposition 2.2. If X is locally compact and Y is Tychonoff, then (P, τC) is a
subspace of (CL(X × cY ), τF ).

Proof. To prove that τC ⊆ τF on P, let U be an open set in X and consider the
τC-open set [U ]. If f ∈ [U ], then (U × cY )− ∩ P is a τF -neighborhood of f in P
contained in [U ]. Now, consider a τC-open set [K : I], where K ∈ K(X) and I is
open in Y , and choose a cY -open set J with I = J ∩ Y . It is easy to verify that

[K : I] = ((K × (cY \ J))c)+ ∩ P.
Conversely, let U ⊆ X and V ⊆ cY be open, and f ∈ (U × V )− ∩ P. Then

(x, f(x)) ∈ U × (V ∩ Y ) for some x ∈ B := domf , so local compactness of X and
continuity of f imply that there is an X-open neighborhood Ox of x with compact
closure such that Ox ⊆ U and f(Ox ∩B) ⊆ V ∩ Y . Then

f ∈ [Ox] ∩ [Ox : V ∩ Y ] ⊆ (U × V )− ∩ P.
Finally, let K be a compact set in X × cY and f ∈ (Kc)+. By local compactness,
every compact set in X×cY missing f is contained in a finite union of product sets
with compact factors missing f , so, without loss of generality, assume K = K1×K2,
where K1 ∈ K(X), K2 ∈ K(cY ). It is easy to verify that Γ(f) ⊆ (K1×K2)c if and
only if f(K1 ∩ (domf)) ⊆ Kc

2. In other words,

[(K1 ×K2)c]+ ∩ P = [K1 : (Kc
2) ∩ Y ].

This implies, that (Kc)+ ∩ P ∈ τC , so τF �P⊆ τC indeed. �
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Remark 2.3. Observe, that for X locally compact and any Y , we can use the above
argument to show that the Fell topology from CL(X ×Y ) on P is weaker than τC .
However, the converse is not true in general: indeed, considerX = {0}∪{ 1

n : n ∈ ω},
Y = ω, both with the natural topology, and define fn : {0, 1

n} → Y via fn(0) = 0,

fn( 1
n ) = n for each n ∈ ω, and f : {0} → Y via f(0) = 0. Then the sequence

{fn}n τF -converges to f , but fails to τC-converge to f , since f ∈ [X : {0}] but
fn /∈ [X : {0}] for all n. �

It is not hard to show that (P, τC) is always T1; however, higher separation
axioms impose some restrictions on X and Y , as was shown in [Ho1, Ho2] for
Tychonoff X,Y . We have the following more refined result on separation axioms
with a new proof:

Proposition 2.4. The following are equivalent:

(i) (P, τC) is Hausdorff (Tychonoff);
(ii) X is locally compact and Y is Hausdorff (Tychonoff).

Proof. (i)⇒(ii) Y has the relevant properties by Proposition 2.1(ii). Proposition
2.1(i) implies, that (CL(X), τF ) is Hausdorff, so X is locally compact by [Be, Propo-
sition 5.1.2]. We can also give a direct proof of local compactness of X: let x ∈ X
and y1 6= y2 be two different points of Y . Then {(x, y1)} and {(x, y2)} are two
different elements of P, so there are disjoint neighborhoods H1, H2 of {(x, y1)} and
{(x, y2)}, respectively in (P, τC). We can assume that

H1 = [U1] ∩ [K1 : I1] ∩ [L1 : ∅] and H2 = [U2] ∩ [K2 : I2] ∩ [L2 : ∅],
where U1, U2 are nonempty X-open sets, I1, I2 are Y -open, K1,K2, L1, L2 ∈ K(X),
U1 ⊆ Lc1, and U2 ⊆ Lc2. Since {(x, y1)} ∈ H1 and {(x, y2)} ∈ H2, we have x ∈
U1 ∩ U2. Moreover, U1 ∩ U2 ⊆ K1 ∪K2, since otherwise, if z ∈ U1 ∩ U2 \K1 ∪K2,
then {(z, y1)} ∈ H1 ∩H2, a contradiction.

(ii)⇒(i) Hausdorffness: let f0, f1 ∈ P be distinct. If domf0 6= domf1, without
loss of generality, take some x ∈ domf0 \ domf1. Then there is an X-open U and
K ∈ K(X) with x ∈ U ⊆ K ⊆ X \ domf1. It follows that [U ] and [K : ∅] are
disjoint τC-open neighborhoods of f0 and f1, respectively. On the other hand, if
B = domf0 = domf1, then f0(x) 6= f1(x) for some x ∈ B, so choosing disjoint
Y -open neighborhoods I0, I1 of f0(x), f1(x), respectively, as well as an X-open
neighborhood U of x with compact closure such that fi(U ∩ B) ⊆ Ii for i = 0, 1,
we have that [U ] ∩ [U : I0] and [U ] ∩ [U : I1] are disjoint τC-open neighborhoods of
f0 and f1, respectively.

Tychonoffness: X ×βY is Hausdorff and locally compact (βY is the Čech-Stone
compactification of Y ), so (CL(X × βY ), τF ) is Tychonoff [Be, Proposition 5.1.2],
and, by our Proposition 2.2, so is (P, τC). �

3. Čech-completeness and related properties of (P, τC)

From now on, cY is a fixed Hausdorff compactification of a Tychonoff space Y .
Recall, that Y is Čech-complete [En], if Y is Gδ in its compactification cY . Also,
Y has a Gδ-diagonal, if {(y, y) : y ∈ Y } is a Gδ-set in Y × Y , equivalently [Gr], if
there exists a sequence {Vm}m of cY -open covers of Y such that for each y ∈ Y ,
{y} = Y ∩

⋂
m St(y,Vm), where

St(y,Vm) =
⋃
{V ∈ Vm : y ∈ V }.
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We will say that Y is a p-space [Arh, Gr], provided there is a feathering for Y , i.e.
there is a sequence {Vm}m of open covers of Y in cY such that

⋂
m St(y,Vm) ⊆ Y

for all y ∈ Y . Analogously, we can define cp-spaces, if we require
⋂
m St(K,Vm) ⊆ Y

for all K ∈ K(Y ), where

St(K,Vm) =
⋃
{V ∈ Vm : K ∩ V 6= ∅}.

It is easy to see that a Čech-complete space is a cp-space, which in turn is a p-space.
On the other hand, a paracompact p-space is a cp-space: indeed, Y is a paracompact
p-space provided there is a metric space Z and a perfect map f : Y → Z [Gr]. For
each m ≥ 1 consider the Y -cover

V ′m = {f−1(U) : U open Z-ball of radius
1

m
}

and define Vm = {V ⊆ cY open : Y ∩V ∈ V ′m}. Take some K ∈ K(Y ), and assume
there exists p ∈ (cY \ Y ) ∩

⋂
m St(K,Vm). Then for each m we can find Vm ∈ Vm

with p ∈ Vm and K ∩ Vm 6= ∅; let ym ∈ K ∩ Vm. The sequence {ym}m has a
cluster point y ∈ K, and by continuity of f , f(y) is a cluster point of {f(ym)}m.
The set L = f−1(f(y)) is compact in Y and hence in cY as well, thus, there

exists a cY -open W containing p such that W
cY ⊆ cY \ L. Since f is closed,

f(Y ∩W cY
) is a closed set missing f(y). Note that each f(Y ∩ Vm) is a Z-open

1
m -ball containing f(ym), and since f(y) is a cluster point of {f(ym)}m, we can find

m so that f(Y ∩ Vm) ⊆ Z \ f(Y ∩W cY
). This leads to a contradiction, however,

since p ∈W ∩ Vm, and so Y ∩W ∩ Vm 6= ∅.
Let X be a hemicompact space (i.e. in the family of all compact subspaces of

X ordered by inclusion, there exists a countable cofinal subfamily [En]). If X is
also locally compact, then there exists a sequence {Cn}n of compact sets covering
X such that Cn ⊆ intCn+1 (assume C0 = ∅). By Proposition 2.2, P with the
Fell topology restricted from CL(X × cY ) coincides with τC . Then H, the closure
of P in (CL(X × cY ), τF ), is locally compact and hence an open subspace of its
Alexandroff one-point compactification αH.

Given a sequence {Vm}m of cY -open covers of Y , m,n ∈ ω, a finite (possibly
empty) collection U of nonempty X-open subsets of Cn+1, and ϕ : U → Vm, the set

Hm,n(U , ϕ) =

H∩(((Cn \ ∪U)× cY )c)+ ∩
⋂
U∈U

((U × cY )− ∩ ((U × (cY \ ϕ(U)))c)+)

is open in αH. Let Hm,n be the collection of all these Hm,n(U , ϕ)’s. Note that
f ∈ P ∩ Hm,n(U , ϕ) if and only if the following conditions are satisfied (denote
B = domf):

(i) B ∩ Cn ⊆
⋃
U ,

(ii) B ∩ U 6= ∅ for all U ∈ U ,
(iii) f(B ∩ U) ⊆ ϕ(U) for all U ∈ U .

We are now ready to prove some of our main results:

Theorem 3.1. Let X be locally compact and hemicompact.

(i) If Y is Čech-complete with a Gδ-diagonal, then (P, τC) is Čech-complete.
(ii) If Y is a cp-space with a Gδ-diagonal, then (P, τC) is a p-space.
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Proof. (i) We will show that P is Gδ in αH: let {Vm}m be a sequence of covers
of Y consisting of cY -open sets that witnesses both Čech-completeness and the
Gδ-diagonal property of Y . We claim that

(∗) P =
⋂

m,n∈ω
(
⋃
Hm,n).

Indeed, first take f ∈ P, m,n ∈ ω, and denote B = domf . If B ∩ Cn = ∅, then
f ∈ Hm,n(∅, ∅) ∈ Hm,n. If B ∩ Cn 6= ∅, then by continuity of f , and compactness
of B ∩Cn, there are finite families U of X-open subsets of Cn+1 and W ⊆ Vm such
that B ∩ Cn ⊆ ∪U , and for every U ∈ U , U ∩ B 6= ∅ and there is WU ∈ W with
f(U ∩ B) ⊆ WU . Define ϕ : U → Vm via ϕ(U) = WU for every U ∈ U . Then
f ∈ Hm,n(U , ϕ) ∈ Hm,n.

Conversely, let D ∈
⋂
m,n∈ω(

⋃
Hm,n). We will show that for every x ∈ pX(D),

D[x] ⊆ Y and D[x] is a singleton, so D is a closed graph of a function with a
compact range; thus, D ∈ P. Indeed, fix m ∈ ω and find n ∈ ω such that x ∈ Cn.
There is a finite family U of nonempty X-open subsets of Cn+1, and ϕ : U → Vm
such that D ∈ Hm,n(U , ϕ).

Then there is a U ∈ U containing x (otherwise, Hm,n(U , ϕ) ⊆ (({x}×cY )c)+∩H,

and x /∈ pX(D), so D[x] ⊆ ϕ(U) ⊆ ∪Vm; thus, D[x] ⊆
⋂
m(∪Vm) = Y by Čech-

completeness of Y . To prove that D[x] is a singleton, suppose there are distinct
z, y ∈ D[x]. Then, by the Gδ-diagonal property, z ∈ Y ∩

⋂
m St(y,Vm) = {y}, a

contradiction.
(ii) Let {Vm}m be a sequence of covers of Y consisting of cY -open sets that

witness both the cp-space and Gδ-diagonal property of Y . We claim that

{Hm,n : m,n ∈ ω}
is a feathering for P: to show that each Hm,n is an αH-open cover of P, we can
argue as in the first inclusion of (∗).

Now choose f0 ∈ P with B0 = domf0, and consider D ∈
⋂
m,n St(f0,Hm,n).

As in (i), it suffices to show that for every x ∈ pX(D), D[x] ⊆ Y , and D[x] is
a singleton: let n ∈ ω be such that x ∈ Cn. For every m ∈ ω there is a finite
family U of nonempty X-open subsets of Cn+1 and a ϕ : U → Vm such that
D, f0 ∈ Hm,n(U , ϕ). Then B0 intersects every element of U , and there is a U ∈ U
containing x, so we have

D[x] ∪ f0(B0 ∩ U) ⊆ ϕ(U) ∈ Vm.
Consequently, by the cp-space property of Y ,

D[x] ⊆
⋂
m

St(f0(B0 ∩ Cn+1),Vm) ⊆ Y.

To prove that D[x] is a singleton, we can use the argument from (i). �

A sieve (cf. [Gr]) of Y in cY is a pair (G,T ), where (T,<) is an indexing tree of
height ω, and G is a decreasing function from T into the nonempty cY -open sets
(i.e. t ≤ t′ implies G(t) ⊇ G(t′)) such that the sets corresponding to the initial
level of T cover Y , and for each t ∈ T ,

G(t) ∩ Y =
⋃
{G(t′) ∩ Y : t′ is an immediate successor of t}.

A thread of the sieve (G,T ) is the G-image of an infinite branch of T . If Y is a
Wδ subset of cY - i.e. there is a sieve of Y in cY each thread of which intersects in a
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(nonempty) subset of Y [CCN] - then Y is called sieve complete (the term was first
used in [Mi1], but monotonically Čech complete [CCN], and satisfying Condition K
[WW] was also used; see also [Te]). Note that sieve completeness is independent of
the compactification cY [CCN, Proposition 2.11]. It is known that sieve complete
spaces are the continuous open images of Čech-complete spaces [WW], so Čech-
complete spaces are sieve complete; on the other hand, paracompact sieve complete
spaces are Čech-complete [Mi1]. A space Y has a Wδ-diagonal [CCN], provided it
has a sieve in cY , such that if {Vm}m is any thread of it, and y ∈

⋂
m Vm ∩Y , then

{y} =
⋂
m Vm ∩ Y . If Y has a Gδ-diagonal, it has a Wδ-diagonal as well.

Theorem 3.2. Let X be locally compact and hemicompact. If Y is sieve complete
with a Wδ-diagonal, then (P, τC) is sieve complete.

Proof. Let (G,T ) be a sieve of Y in cY witnessing both sieve completeness and
the Wδ-diagonal property of Y . Let Tm stand for the m-th level of T , and denote
Vm = {G(t) : t ∈ Tm} for all m. Inductively define a tree S, and a function H from
S to the nonempty αH-open sets as follows: S =

⋃
m Sm will be a subtree of P<ω,

the tree of finite sequences of points of P, where Sm ⊆ Pm is the m-th level of S.
Let S0 = {∅}, and put H(∅) = H0,0(∅, ∅) = H.

Let S1 = {(f) : f ∈ P}. To define H(f) for f ∈ P, first find the smallest n for
which Cn ∩ domf 6= ∅, and using compactness of Cn ∩ domf , get appropriate U , ϕ
such that f ∈ H1,n(U , ϕ). Finally, let H(f) be an αH-open set such that

f ∈ H(f) ⊆ H(f)
αH
⊆ H1,n(U , ϕ).

Fix m ≥ 1. Assume that Sm has been defined, and for each s ∈ Sm, H(s) has been

chosen so that H(s)
αH
⊆ H(s′) ∩Hm,ns

(Us, ϕs) for some nonempty Us, ϕs, where
s′ ∈ Sm−1 is the predecessor of s, and ns = ns′ + 1. Given s ∈ Sm, (s, f) ∈ Pm+1

will be an immediate successor of s in S, if f ∈ P ∩H(s), so

Sm+1 = {(s, f) : s ∈ Sm, f ∈ P ∩H(s)}.
Let (s, f) ∈ Sm+1, and B = domf . Then f ∈ Hm,ns

(Us, ϕs), so B ∩ Cns
⊆

⋃
Us,

and for all U ∈ Us, U ⊆ Cns+1, B ∩ U 6= ∅, and f(B ∩ U) ⊆ ϕs(U). Fix U ∈ Us;
then ϕs(U) = G(t) for some t ∈ Tm. Consider the collection

W(U) = {G(t′) ∈ Vm+1 : t′ ∈ Tm+1, t
′ > t},

for which Y ∩ϕs(U) =
⋃
{Y ∩W : W ∈ W(U)}, and W ⊆ ϕs(U) for all W ∈ W(U).

Since
⋃
U∈UsW(U) is a cY -open cover of f(B ∩ Cns

), each x ∈ B ∩ Cns
has an

X-open neighborhood Ox so that Ox ⊆ U for some U ∈ Us, and f(B ∩ Ox) ⊆ W
for some W ∈ W(U).

By compactness of B∩Cns
, we can find x0, . . . , xp ∈ B∩Cns

such that B∩Cns
⊆⋃

i≤pOxi
, and for all i ≤ p, there is some Wi ∈

⋃
U∈UsW(U) with f(B∩Oxi

) ⊆Wi.
Denote

C = Cns+1 \
⋃
i≤p

Oxi ,

and let N = ∅, if B ∩ C = ∅. If B ∩ C 6= ∅ then, because Vm+1 covers Y , each
z ∈ B ∩ C has an X-open neighborhood Nz such that Nz ⊆ intCns+2 \ Cns

, and
f(B ∩ Nz) ⊆ V for some V ∈ Vm+1. By compactness of B ∩ C, we can find
z0, . . . , zr ∈ B ∩ C such that B ∩ C ⊆

⋃
j≤rNj , and for all j ≤ r there is some

Vj ∈ Vm+1 with f(B ∩Nzj ) ⊆ Vj ; put N = {Nzj : j ≤ r}.
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Define U(s,f) = {Oxi
: i ≤ p} ∪ N , and

ϕ(s,f)(A) =

{
Wi, if A = Oxi

for some i ≤ p,
Vj , if A = Nzj for some j ≤ r.

It is clear from the above construction, that f ∈ Hm+1,ns+1(U(s,f), ϕ(s,f)), so we
can find an αH-open set H(s, f) such that putting n(s,f) = ns + 1 we have

f ∈ H(s, f) ⊆ H(s, f)
αH
⊆ H(s) ∩Hm+1,n(s,f)

(U(s,f), ϕ(s,f)).

Then H(s, f) ⊆ H(s), and P ∩H(s) =
⋃
{P ∩H(s, f) : f ∈ P ∩H(s)}, so (H,S)

is a sieve of P in αH.
Finally, let {H(sm) : m ≥ 1} be a thread in (H,S), where for all m, sm ∈ Sm,

and sm+1 is an immediate successor of sm in S. Let Usm be a finite collection of
X-open sets, and ϕsm : Usm → Vm such that

H(sm)
αH
⊆ H(sm−1) ∩Hm,nsm

(Usm , ϕsm).

Since αH is compact, then
⋂
mH(sm) 6= ∅, so we can choose D ∈

⋂
mH(sm), and

x ∈ pX(D). Find the first m with x ∈ Cnsm
. Then the set

T ′k = {t ∈ Tk : ∃U ∈ Usk with x ∈ U and G(t) = ϕsk(U)}
is nonempty for each k ≥ m. Moreover, if t ∈ T ′k for some k > m, and U ∈ Usk is
such that G(t) = ϕsk(U), then by the definition of Usk , either U is disjoint from
Csk−1

, which is not the case, since x ∈ Csm ∩ U ⊆ Csk−1
∩ U , or there exists a

U ′ ∈ Usk−1
with U ⊆ U ′ and G(t) ∈ W(U ′). Then there is t′ ∈ Tk−1 with t′ < t,

and G(t′) = ϕsk−1
(U ′); thus, t′ ∈ T ′k−1. It means that T ′ =

⋃
k≥m T

′
k is a subtree of

T of height ω, which is clearly finite splitting (i.e. each node in T ′ has only finitely
many immediate successors - see [Ke]). By König’s Lemma, T ′ has an infinite
branch

tm < · · · < tk < tk+1 < . . .

where tk ∈ T ′k for each k ≥ m. Let Uk ∈ Usk be such that ϕsk(Uk) = G(tk). Then
x ∈ Uk, and D[x] ⊆ ϕsk(Uk) for all k ≥ m, so {ϕsk(Uk) : k ≥ m} is part of a thread
of (G,T ) containing D(x). This thread is intersecting in a singleton y ∈ Y , since Y
is sieve complete with a Wδ-diagonal. It follows, that y = D(x); thus, D ∈ P. �

A space Y is a q-space [Mi2, Ch], if for each y ∈ Y there is a sequence {Un}n of
neighborhoods of y such that whenever yn ∈ Un, the sequence {yn}n has a cluster
point. Note that sieve complete, as well as, p-spaces are q-spaces.

Proposition 3.3. Let Y be a non-countably compact space. If (P, τC) is a q-space,
then X is hemicompact.

Proof. Let y ∈ Y , and define f(x) = y for each x ∈ X. Let Un =
⋂
p∈Pn

[Upn] ∩⋂
r∈Rn

[Kr
n : Irn] (where Pn, Rn are finite sets) be a sequence of τC-neighborhoods

of f satisfying the q-space property at f .
For every p ∈ Pn choose xpn ∈ Upn and put Kn = {xpn : p ∈ Pn} ∪

⋃
r∈Rn

Kr
n.

Then Kn is compact for every n, further, {Kn}n is a countable cofinal subfamily of
K(X): otherwise, let K ∈ K(X) be such that for every n ∈ ω there is kn ∈ K \Kn.
Let {yn}n be a sequence without a cluster point in Y . Define fn : Kn ∪ {kn} → Y
via fn(x) = f(x) for x ∈ Kn, and fn(kn) = yn. It follows, that the sequence
fn ∈ Un clusters in some h ∈ P. The set h(K ∩ domh) is compact, so there is an
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open I ⊆ Y and n0 ∈ ω such that h(K ∩ domh) ⊆ I, and yn /∈ I for every n ≥ n0.
Then [K : I] is a τC-neighborhood of h, and for every n ≥ n0, fn /∈ [K : I], which
is a contradiction. �

Remark 3.4. If Y is countably compact, the above proposition may fail: indeed, if
Y = {0, 1} and X is an uncountable discrete space, then (P, τC) is a closed subspace
of (CL(X × Y ), τF ), so it is Čech-complete, but X is not hemicompact. �

Theorem 3.5. Let Y be a non-countably compact space with a Gδ-diagonal (Wδ-
diagonal). Then the following are equivalent:

(i) (P, τC) is Čech-complete (sieve complete);
(ii) X is locally compact, Lindelöf, and Y is Čech-complete (sieve complete).

Proof. (i)⇒(ii) By Proposition 2.4, X is locally compact, by Proposition 3.3, X is
hemicompact, and hence Lindelöf. Moreover, Y is Čech-complete (sieve complete)
by Proposition 2.1(ii).

(ii)⇒(i) See Theorem 3.1(i), and Theorem 3.2. �

Theorem 3.6. Let Y be a non-compact, paracompact space with a Gδ-diagonal.
Then the following are equivalent:

(i) (P, τC) is a p-space;
(ii) X is locally compact, Lindelöf, and Y is metrizable.

Proof. (i)⇒(ii) By Proposition 2.4, X is locally compact, by Proposition 3.3, X is
hemicompact, and hence Lindelöf. Moreover, Y is a p-space by Proposition 2.1(ii),
and a paracompact p-space with a Gδ-diagonal is metrizable [Gr].

(ii)⇒(i) See Theorem 3.1(ii). �

The following theorem is an extension of [Ho2, Theorem 3.3] (for another proof
see [NZ]):

Theorem 3.7. The following are equivalent:

(i) (P, τC) is completely metrizable;
(ii) X is hemicompact, metrizable, and Y is completely metrizable.

Proof. (i)⇒(ii) Y is completely metrizable by Proposition 2.1(ii); further, metriz-
ability of (P, τC) implies metrizability of (CL(X), τF ) (see Proposition 2.1(i)),
which in turn is equivalent to hemicompactness and metrizability of X [Be, Theo-
rem 5.1.5].

(ii)⇒(i) (P, τC) is metrizable by [Ho2, Theorem 2.4], and Čech-complete by our
Theorem 3.1, hence it is completely metrizable [En, Theorem 4.3.26]. �

Finally, using the argument of [Ho2, Theorem 3.4], we can fully characterize
Polishness of (P, τC):

Theorem 3.8. The following are equivalent:

(i) (P, τC) is Polish;
(ii) X is hemicompact, metrizable, and Y is Polish.
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4. Čech-completeness and related properties of the compact-open
topology on C(X,Y )

Properties of the compact-open topology τCO are well established for Y = R, or
more generally for a locally convex completely metrizable Y (cf. [MN1, En], or more
recently [GRe]). This restriction on Y is usually required to use some extension
theorem (Tietze, Dugundji) in order to obtain the desired result. As we have shown
in previous sections, one can get by in (P, τC) without extension theorems, and with
considerably more general Y . On the other side, (C(X,Y ), τCO) embeds as a closed
subset in (P, τC), which leads to results on τCO with less restricted Y . For theorems
of this general nature see e.g. [Are], [Mi3], [OM] or [SM].

To be more specific, note that if X is a hemicompact k-space and Y is completely
metrizable, then (C(X,Y ), τCO) is completely metrizable [MN1], and hence Čech-
complete, sieve complete, as well as a p-space. As a corollary to Theorem 3.2
(resp. Theorem 3.1) , we can generalize this result to a sieve complete (resp. Čech-
complete, cp-space) Y with a Wδ-diagonal (resp. Gδ-diagonal). For another proof
see [HZ2]:

Theorem 4.1. Let X be a hemicompact k-space, and Y be sieve complete (Čech-
complete, cp-space, resp.) with a Wδ-diagonal (Gδ-diagonal, resp.).

Then (C(X,Y ), τCO) is sieve complete (Čech-complete, p-space, resp.).

Proof. Let {Cn}n be a cofinal collection in K(X), and Z =
⊕

n Cn the topological
sum of the Cn’s. Then Z is hemicompact, locally compact and, since X is a k-space,
the natural mapping ψ : Z → X is compact-covering and quotient. Consequently,
the map ψ∗ : (C(X,Y ), τCO)→ (C(Z, Y ), τCO), defined via

ψ∗(f) = f ◦ ψ, for all f ∈ C(X,Y ),

is a closed embedding [MN1, Corollary 2.2.8(b), and Theorem 2.2.10]. It follows
from Theorem 3.2 (Theorem 3.1, resp.), and Proposition 2.1(ii), that (C(Z, Y ), τCO)
is sieve complete (Čech-complete, p-space, resp.), as is (C(X,Y ), τCO), which sits
in (C(Z, Y ), τCO) as a closed subspace. �

5. Paracompactness and related properties of (P, τC)

Since a paracompact p-space with a Gδ-diagonal is metrizable [Gr], we have

Lemma 5.1. A locally compact, Lindelöf space with a Gδ-diagonal is metrizable.

Theorem 5.2. Let Y be a Polish space. The following are equivalent:

(i) (P, τC) is Polish;
(ii) (P, τC) is Lindelöf;
(iii) X is hemicompact, and metrizable.

Proof. For (iii)⇔(i) see Theorem 3.8. As for (ii)⇒(iii), observe that (P, τC) Haus-
dorff implies X is locally compact (Proposition 2.4), so by Proposition 2.1(i),
(CL(X), τF ) is Lindelöf, and so is X. This in turn implies that (C(X,Y ), τCO)
is metrizable [MN1, Exercise 4.9.1] and, by Proposition 2.1(ii), Lindelöf; thus, 2nd
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countable. Then, by [MN1, Exercise 4.9.7(a)], X is an ℵ0-space (i.e. it has a count-
able k-network [Gr]). Finally, since an ℵ0-space has a Gδ-diagonal, X is metrizable
by Lemma 5.1. �

Proposition 5.3. Let Y be sieve complete (Čech-complete, cp-space, resp.) with
a Wδ-diagonal (Gδ-diagonal, resp.). If (P, τC) is normal, then (P, τC) is sieve
complete (Čech-complete, a p-space, resp.).

Proof. (CL(X), τF ) is normal since, by Proposition 2.4 and Proposition 2.1(i), it
embeds as a closed subset in (P, τC), so X is locally compact and hemicompact
[HLP]. By Theorem 3.2 (Theorem 3.1), (P, τC) is sieve complete (Čech-complete,
a p-space, resp.). �

If we restrict our attention to spaces with Gδ-diagonals, it is possible to extend
Theorem 5.2:

Theorem 5.4. Let X have a Gδ-diagonal, and Y be a non-compact Polish space.
Then the following are equivalent:

(i) (P, τC) is Polish;
(ii) (P, τC) is normal;
(iii) X is locally compact, and Lindelöf.

Proof. (iii)⇒(i) follows from Lemma 5.1, and Theorem 3.8.
(ii)⇒(iii) follows from Proposition 5.3, and Theorem 3.5. �

Proposition 5.5. (P, τC) is paracompact if and only if it is Lindelöf, if either of
the following is satisfied:

(i) X has a Gδ-diagonal and Y is 2nd countable;
(ii) X,Y are separable.

Proof. The nontrivial part is to prove that paracompactness implies Lindelöfness.
Paracompactness of (P, τC) implies paracompactness of (CL(X), τF ) (by Proposi-
tion 2.4 and Proposition 2.1(i)), so X is locally compact and Lindelöf [HLP].

Then by Lemma 5.1, (i) implies (ii), so it suffices to prove Lindelöfness of (P, τC)
for (ii): let DX , DY be countable dense sets in X and Y , respectively. We will
be done if we show that (P, τC) is separable: by [HZ1, Proposition 2.1(iii)], the
collection of sets

[K0 : ∅] ∩
⋂
i≤n

[Ui] ∩ [Ui : Ii],

with n ≥ 1,K0, Ui ∈ K(X), ∅ 6= Ui ⊆ X open, K0, Ui pairwise disjoint for i ≤ n
and ∅ 6= Ii ⊆ Y open (i ≤ n), forms a π-base for τC . Using this π-base, it is not
hard to verify that the collection of continuous partial maps with values in DY ,
the domains of which run over the finite subsets of DX , is dense (and countable)
in (P, τC). �

Remark 5.6. Note that paracompactness of (P, τC) is not equivalent to Lindelöfness
and local compactness of X (as Theorem 5.4 would suggest), since otherwise (com-
paring Theorem 5.2 and Proposition 5.5(ii)), a separable, locally compact, Lindelöf
space would be metrizable (which is not the case, just consider βω). The following
results suggest rather, that paracompactness of (P, τC) could be closer to metriz-
ability of (P, τC). �
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Proposition 5.7. Let Y be a p-space with a Gδ-diagonal. The following are equiv-
alent:

(i) (P, τC) is paracompact;
(ii) (P, τC) is a paracompact p-space;

Proof. (i)⇒(ii) follows from Proposition 5.3, since Y is paracompact by Proposition
2.1(ii), and a paracompact p-space is a cp-space. �

Theorem 5.8. Let Y be a p-space. The following are equivalent:

(i) (P, τC) is paracompact with a Gδ-diagonal;
(ii) (P, τC) is metrizable;
(iii) X is hemicompact metrizable, and Y is metrizable.

Proof. (i)⇒(ii) It follows from Proposition 2.1(ii), that Y has a Gδ-diagonal, so by
Proposition 5.7, (P, τC) is a paracompact p-space with a Gδ-diagonal, and hence,
metrizable [Gr]. The remaining implications follow from [Ho2, Theorem 2.4]. �

The following lemma is needed to prove our last characterization of paracom-
pactness of (P, τC), but it may be of independent interest:

Lemma 5.9. Let X,Y be such that partial continuous functions with closed do-
mains are continuously extendable over X; moreover, suppose that there exists an
open base V for Y closed under finite intersections such that for each nonempty
K ∈ K(X) and V ∈ V, every function f ∈ C(K,V ) is extendable to some
f∗ ∈ C(X,V ).

Then the set-valued function ψ : (P, τC) ⇒ (C(X,Y ), τCO) defined via

ψ(f) = {g ∈ C(X,Y ) : g �domf= f}
is lower semicontinuous.

Proof. The restriction mapping

η : (CL(X), τF )× (C(X,Y ), τCO)→ (P, τC),

defined via η(B, f) = f �B , is an open mapping (see [HZ1, Proposition 3.3]). It
suffices to notice that ψ−1(V) = η(CL(X)×V) ∈ τC for any V ∈ τCO. �

Theorem 5.10. Let Y be a Frèchet space. The following are equivalent:

(i) (P, τC) is paracompact;
(ii) X is locally compact, Lindelöf, and there exists a continuous mapping

ϕ : (P, τC) → (C(X,Y ), τCO) such that ϕ(f) is a continuous extension of
f ∈ P;

(iii) X is locally compact, Lindelöf, and (P, τC) embeds as a closed subset in
(CL(X), τF )× (C(X,Y ), τCO).

Proof. (i)⇒(ii) X is locally compact and Lindelöf by [HLP], since (CL(X), τF ) is
paracompact by Proposition 2.4, and Proposition 2.1(i). Now use Lemma 5.9 along
with Michael’s Selection Theorem, as in the proof of [Ho2, Theorem 4.1], to finish
the proof.

(ii)⇒(iii) See the proof of [Ho2, Theorem 4.2].
(iii)⇒(i) If X is locally compact and Lindelöf, then (CL(X), τF ) is locally com-

pact, paracompact [HLP] and (C(X,Y ), τCO) is metrizable [MN1]; hence, the prod-
uct (CL(X), τF )× (C(X,Y ), τCO) is paracompact [En, Exercise 5.5.5.(c)]. �
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Paracompactness and normality have been studied for the Fell topology [HLP],
as well as for the compact-open topology [Po],[OM]. For the generalized compact-
open topology we only have the above partial results, so we ask:

Problem 5.11. Characterize paracompactness (normality) of (P, τC) in terms of
X and Y . In particular, is paracompactness (normality) of (P, τC) equivalent to
its metrizability for some reasonable Y (say Y = R)?
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