ČECH-COMPLETENESS AND RELATED PROPERTIES OF THE GENERALIZED COMPACT-OPEN TOPOLOGY

ĽUBICA HOLÁ AND LÁSZLÓ ZSILINSZKY

ABSTRACT. The generalized compact-open topology τ_C on partial continuous functions with closed domains in X and values in Y is studied. If Y is a noncountably compact Čech-complete space with a G_{δ} -diagonal, then τ_C is Čechcomplete, sieve complete and satisfies the *p*-space property of Arhangel'skiĭ, respectively, if and only if X is Lindelöf and locally compact. Lindelöfness, paracompactness and normality of τ_C is also investigated. New results are obtained on Čech-completeness, sieve completeness and the *p*-space property for the compact-open topology on the space of continuous functions with a general range Y.

1. INTRODUCTION

The generalized compact-open topology τ_C on the space of partial continuous functions with closed domains was introduced by *J. Back* in [Ba] in connection with investigating utility functions emerging in mathematical economics. It proved to be a useful tool in studying convergence of dynamic programming models [Wh], [La], as well as in applications to the theory of differential equations [BC]. This new interest in τ_C complements the attention paid to spaces of partial maps in the past [Za], [Ku1], [Ku2], [AA], [AB], [BB], [Se], and more recently in [Fi], [St], [KS], [BCH1], [BCH2], [DN1], [DN2], [HZ1], [HZ2].

Various topological properties of τ_C have already been established, e.g. separation axioms in [Ho1], complete metrizability in [Ho2] and other completeness type properties in [HZ1] and [NZ], respectively; also, in [DN1], [DN2] the authors study topological properties of spaces of partial maps in a more general setting.

It is the purpose of this paper to continue in this research by investigating Cechcompleteness of τ_C . In the process, sieve completeness and the *p*-space property [Arh] of τ_C is proved to be equivalent to its Čech-completeness in the most interesting cases, which is much like the situation with the compact-open topology τ_{CO} on the space of continuous functions (see [MN1, MN2]). It is worth noticing however, that despite the close connection between τ_C and τ_{CO} , properties of these topologies do not always coincide. On the contrary, in some cases (like Baireness, or weak α -favorability [HZ1]), the generalized compact-open topology exhibits properties resembling those of the Fell hyperspace topology τ_F , which makes τ_C a true mixture of τ_{CO} and τ_F . In Section 2 we collect some definitions and auxiliary results for the topologies we are to study. In Section 3, we prove the main results of the

²⁰⁰⁰ Mathematics Subject Classification. Primary 54C35; Secondary 54E18, 54E50, 54D20, 54B20, 54C60, 54D99.

Key words and phrases. Generalized compact-open topology, Fell topology, compact-open topology, Čech-complete, sieve complete, p-spaces, Lindelöf, paracompact and normal spaces.

This work has been supported by the grant Vega 2/7139/27.

paper: a characterization of Čech-completeness, sieve completeness and the *p*-space property, respectively. Extending a theorem of *Holá* [Ho2], a full characterization of complete metrizability of τ_C is also given. In Section 4, we obtain sufficient conditions for Čech-completeness, sieve completeness and the *p*-space property, respectively, of the compact-open topology $(C(X, Y), \tau_{CO})$ for Y with a G_{δ} -diagonal, thus generalizing results of *McCoy* and *Ntantu* [MN1, MN2]. In Section 5, the relationship between Lindelöfness, paracompactness and normality of τ_C is explored. Surprisingly, normality of τ_C implies its Čech-completeness and the reverse implication is also true under some restrictions. An application of paracompactness of τ_C to continuous extensions of partial functions is given.

2. Preliminaries

Unless otherwise noted, all spaces are nontrivial Hausdorff spaces. If X is a topological space, then B^c , intB, and \overline{B} (or \overline{B}^X) will stand for the complement, interior, and closure of $B \subseteq X$, respectively. Denote by CL(X) the family of nonempty closed subsets of X, and by K(X) the nonempty compact subsets of X. For any $B \in CL(X)$, and a topological space Y, C(B,Y) will stand for the space of continuous functions from B to Y (so-called *partial maps*). Denote by

$$\mathcal{P} = \mathcal{P}(X, Y) = \bigcup \{ C(B, Y) : B \in CL(X) \}$$

the family of all partial maps. We will identify a partial map f with its graph $\Gamma(f) \in CL(X \times Y)$. If Y is a Tychonoff space and cY is a fixed compactification of Y, then $\mathcal{P} \subseteq CL(X \times cY)$, since if $(x_{\lambda}, f(x_{\lambda}))$ is a net in $\Gamma(f) \in \mathcal{P}$ converging to some $(x, y) \in X \times cY$, then $x_{\lambda} \to x$ and $f(x_{\lambda}) \to y$; further, by continuity of f, $f(x_{\lambda}) \to f(x)$, so y = f(x) and $(x, y) \in \Gamma(f)$.

Define the so-called generalized compact-open topology τ_C on \mathcal{P} as the topology having subbase elements of the form

$$[U] = \{ f \in \mathcal{P} : (dom f) \cap U \neq \emptyset \},\$$
$$[K:I] = \{ f \in \mathcal{P} : f(K \cap (dom f)) \subseteq I \},\$$

where U is open in $X, K \in K(X)$ and I is an open (possibly empty) subset of Y. We can assume that the I's are members of some fixed open base for Y, or empty.

The compact-open topology [En, MN1] τ_{CO} on C(X, Y) has subbase elements of the form $\{f \in C(X, Y) : f(K) \subseteq I\}$, where $K \in K(X)$ and $I \subseteq Y$ is open.

Denote by τ_F the so-called *Fell topology* [Be, KT] on CL(X) having subbase elements of the form

$$V^{-} = \{A \in CL(X) : A \cap V \neq \emptyset\}$$

with V open in X, plus sets of the form

$$(K^c)^+ = \{A \in CL(X) : A \subseteq K^c\},\$$

with $K \in K(X)$. It was observed by *Fell* that if X is locally compact, then $(CL(X) \cup \{\emptyset\}, \tau_F)$ is a compact Hausdorff space [Fe]; furthermore, since $CL(X) = X^-$ is an open subspace of $(CL(X) \cup \{\emptyset\}, \tau_F)$, $(CL(X), \tau_F)$ is locally compact, if X is. We will use τ_F to denote the Fell topology on $CL(X \times cY)$ as well as on \mathcal{P} . If $L \in CL(X \times Y)$, denote

$$L[x] = \{ y \in Y : (x, y) \in L \}$$

(i.e. L can be viewed as a multifunction with a closed graph [HM]). Let p_X be the projection map from $X \times Y$ onto X, and ω the non-negative integers. For notions not defined in the paper see [En].

In the following two propositions we explore the relationship between the various topologies defined in this section:

Proposition 2.1.

- (i) X and $(CL(X), \tau_F)$ embed in (\mathcal{P}, τ_C) ; further, they embed as closed subsets, if X is locally compact.
- (ii) Y and $(C(X,Y), \tau_{CO})$ embed as closed subsets in (\mathcal{P}, τ_C) .

Proof. (i) $x \mapsto \{x\}$ is a closed embedding of X into $(CL(X), \tau_F)$. Let $y \in Y$ be fixed, and for each $A \in CL(X)$ define $f_A \in \mathcal{P}$ via $f_A(x) = y$ for all $x \in A$, then $\phi : A \mapsto f_A$ is an embedding of $(CL(X), \tau_F)$ into (\mathcal{P}, τ_C) . Let $f \in \mathcal{P}$ be such that it has at least two distinct values $y_1 \neq y_2$, and let I_1, I_2 be Y-open disjoint neighborhoods of y_1, y_2 , respectively. If X is locally compact, we can find $K_1, K_2 \in K(X)$ such that $f(B \cap K_1) \subseteq I_1$, and $f(B \cap K_2) \subseteq I_2$, where B = domf. Then

$$f \in [K_1:I_1] \cap [K_2:I_2] \subseteq \mathcal{P} \setminus \phi(CL(X)),$$

so $\phi(CL(X))$ is closed in (\mathcal{P}, τ_C) .

(ii) Assigning to each $y \in Y$ the function $f_y \in C(X,Y)$, defined via $f_y(x) = y$ for all $x \in X$, sets up a closed embedding of Y into $(C(X,Y), \tau_{CO})$. Moreover, the identity map $i : (C(X,Y), \tau_{CO}) \to (\mathcal{P}, \tau_C)$ is clearly an embedding, and if $f \in \mathcal{P} \setminus i(C(X,Y))$ then there is $x \notin dom f$, so

$$f \in [\{x\} : \emptyset] \subseteq \mathcal{P} \setminus i(C(X, Y));$$

thus, i(C(X, Y)) is closed in (\mathcal{P}, τ_C) .

Proposition 2.2. If X is locally compact and Y is Tychonoff, then (\mathcal{P}, τ_C) is a subspace of $(CL(X \times cY), \tau_F)$.

Proof. To prove that $\tau_C \subseteq \tau_F$ on \mathcal{P} , let U be an open set in X and consider the τ_C -open set [U]. If $f \in [U]$, then $(U \times cY)^- \cap \mathcal{P}$ is a τ_F -neighborhood of f in \mathcal{P} contained in [U]. Now, consider a τ_C -open set [K : I], where $K \in K(X)$ and I is open in Y, and choose a cY-open set J with $I = J \cap Y$. It is easy to verify that

$$[K:I] = ((K \times (cY \setminus J))^c)^+ \cap \mathcal{P}$$

Conversely, let $U \subseteq X$ and $V \subseteq cY$ be open, and $f \in (U \times V)^- \cap \mathcal{P}$. Then $(x, f(x)) \in U \times (V \cap Y)$ for some $x \in B := dom f$, so local compactness of X and continuity of f imply that there is an X-open neighborhood O_x of x with compact closure such that $\overline{O}_x \subseteq U$ and $f(\overline{O}_x \cap B) \subseteq V \cap Y$. Then

$$f \in [O_x] \cap [\overline{O}_x : V \cap Y] \subseteq (U \times V)^- \cap \mathcal{P}.$$

Finally, let K be a compact set in $X \times cY$ and $f \in (K^c)^+$. By local compactness, every compact set in $X \times cY$ missing f is contained in a finite union of product sets with compact factors missing f, so, without loss of generality, assume $K = K_1 \times K_2$, where $K_1 \in K(X), K_2 \in K(cY)$. It is easy to verify that $\Gamma(f) \subseteq (K_1 \times K_2)^c$ if and only if $f(K_1 \cap (dom f)) \subseteq K_2^c$. In other words,

$$[(K_1 \times K_2)^c]^+ \cap \mathcal{P} = [K_1 : (K_2^c) \cap Y].$$

This implies, that $(K^c)^+ \cap \mathcal{P} \in \tau_C$, so $\tau_F \upharpoonright_{\mathcal{P}} \subseteq \tau_C$ indeed.

Remark 2.3. Observe, that for X locally compact and any Y, we can use the above argument to show that the Fell topology from $CL(X \times Y)$ on \mathcal{P} is weaker than τ_C . However, the converse is not true in general: indeed, consider $X = \{0\} \cup \{\frac{1}{n} : n \in \omega\}$, $Y = \omega$, both with the natural topology, and define $f_n : \{0, \frac{1}{n}\} \to Y$ via $f_n(0) = 0$, $f_n(\frac{1}{n}) = n$ for each $n \in \omega$, and $f : \{0\} \to Y$ via f(0) = 0. Then the sequence $\{f_n\}_n \tau_F$ -converges to f, but fails to τ_C -converge to f, since $f \in [X : \{0\}]$ but $f_n \notin [X : \{0\}]$ for all n.

It is not hard to show that (\mathcal{P}, τ_C) is always T_1 ; however, higher separation axioms impose some restrictions on X and Y, as was shown in [Ho1, Ho2] for Tychonoff X, Y. We have the following more refined result on separation axioms with a new proof:

Proposition 2.4. The following are equivalent:

- (i) (\mathcal{P}, τ_C) is Hausdorff (Tychonoff);
- (ii) X is locally compact and Y is Hausdorff (Tychonoff).

Proof. (i) \Rightarrow (ii) Y has the relevant properties by Proposition 2.1(ii). Proposition 2.1(i) implies, that $(CL(X), \tau_F)$ is Hausdorff, so X is locally compact by [Be, Proposition 5.1.2]. We can also give a direct proof of local compactness of X: let $x \in X$ and $y_1 \neq y_2$ be two different points of Y. Then $\{(x, y_1)\}$ and $\{(x, y_2)\}$ are two different elements of \mathcal{P} , so there are disjoint neighborhoods H_1, H_2 of $\{(x, y_1)\}$ and $\{(x, y_2)\}$, respectively in (\mathcal{P}, τ_C) . We can assume that

$$H_1 = [U_1] \cap [K_1 : I_1] \cap [L_1 : \emptyset]$$
 and $H_2 = [U_2] \cap [K_2 : I_2] \cap [L_2 : \emptyset]$,

where U_1, U_2 are nonempty X-open sets, I_1, I_2 are Y-open, $K_1, K_2, L_1, L_2 \in K(X)$, $U_1 \subseteq L_1^c$, and $U_2 \subseteq L_2^c$. Since $\{(x, y_1)\} \in H_1$ and $\{(x, y_2)\} \in H_2$, we have $x \in U_1 \cap U_2$. Moreover, $U_1 \cap U_2 \subseteq K_1 \cup K_2$, since otherwise, if $z \in U_1 \cap U_2 \setminus K_1 \cup K_2$, then $\{(z, y_1)\} \in H_1 \cap H_2$, a contradiction.

(ii) \Rightarrow (i) Hausdorffness: let $f_0, f_1 \in \mathcal{P}$ be distinct. If $dom f_0 \neq dom f_1$, without loss of generality, take some $x \in dom f_0 \setminus dom f_1$. Then there is an X-open U and $K \in K(X)$ with $x \in U \subseteq K \subseteq X \setminus dom f_1$. It follows that [U] and $[K : \emptyset]$ are disjoint τ_C -open neighborhoods of f_0 and f_1 , respectively. On the other hand, if $B = dom f_0 = dom f_1$, then $f_0(x) \neq f_1(x)$ for some $x \in B$, so choosing disjoint Y-open neighborhoods I_0, I_1 of $f_0(x), f_1(x)$, respectively, as well as an X-open neighborhood U of x with compact closure such that $f_i(\overline{U} \cap B) \subseteq I_i$ for i = 0, 1, we have that $[U] \cap [\overline{U} : I_0]$ and $[U] \cap [\overline{U} : I_1]$ are disjoint τ_C -open neighborhoods of f_0 and f_1 , respectively.

Tychonoffness: $X \times \beta Y$ is Hausdorff and locally compact (βY is the Čech-Stone compactification of Y), so $(CL(X \times \beta Y), \tau_F)$ is Tychonoff [Be, Proposition 5.1.2], and, by our Proposition 2.2, so is (\mathcal{P}, τ_C) .

3. Čech-completeness and related properties of (\mathcal{P}, τ_C)

From now on, cY is a fixed Hausdorff compactification of a Tychonoff space Y. Recall, that Y is *Čech-complete* [En], if Y is G_{δ} in its compactification cY. Also, Y has a G_{δ} -diagonal, if $\{(y, y) : y \in Y\}$ is a G_{δ} -set in $Y \times Y$, equivalently [Gr], if there exists a sequence $\{\mathcal{V}_m\}_m$ of cY-open covers of Y such that for each $y \in Y$, $\{y\} = Y \cap \bigcap_m \operatorname{St}(y, \mathcal{V}_m)$, where

$$\mathrm{St}(y,\mathcal{V}_m) = \bigcup \{ V \in \mathcal{V}_m : y \in V \}.$$

We will say that Y is a p-space [Arh, Gr], provided there is a feathering for Y, i.e. there is a sequence $\{\mathcal{V}_m\}_m$ of open covers of Y in cY such that $\bigcap_m \operatorname{St}(y, \mathcal{V}_m) \subseteq Y$ for all $y \in Y$. Analogously, we can define cp-spaces, if we require $\bigcap_m \operatorname{St}(K, \mathcal{V}_m) \subseteq Y$ for all $K \in K(Y)$, where

$$\operatorname{St}(K, \mathcal{V}_m) = \bigcup \{ V \in \mathcal{V}_m : K \cap V \neq \emptyset \}.$$

It is easy to see that a Čech-complete space is a *cp*-space, which in turn is a *p*-space. On the other hand, a paracompact *p*-space is a *cp*-space: indeed, Y is a paracompact *p*-space provided there is a metric space Z and a perfect map $f: Y \to Z$ [Gr]. For each $m \geq 1$ consider the Y-cover

$$\mathcal{V}'_m = \{ f^{-1}(U) : U \text{ open } Z \text{-ball of radius } \frac{1}{m} \}$$

and define $\mathcal{V}_m = \{V \subseteq cY \text{ open} : Y \cap V \in \mathcal{V}'_m\}$. Take some $K \in K(Y)$, and assume there exists $p \in (cY \setminus Y) \cap \bigcap_m \operatorname{St}(K, \mathcal{V}_m)$. Then for each m we can find $V_m \in \mathcal{V}_m$ with $p \in V_m$ and $K \cap V_m \neq \emptyset$; let $y_m \in K \cap V_m$. The sequence $\{y_m\}_m$ has a cluster point $y \in K$, and by continuity of f, f(y) is a cluster point of $\{f(y_m)\}_m$. The set $L = f^{-1}(f(y))$ is compact in Y and hence in cY as well, thus, there exists a cY-open W containing p such that $\overline{W}^{cY} \subseteq cY \setminus L$. Since f is closed, $f(Y \cap \overline{W}^{cY})$ is a closed set missing f(y). Note that each $f(Y \cap V_m)$ is a Z-open $\frac{1}{m}$ -ball containing $f(y_m)$, and since f(y) is a cluster point of $\{f(y_m)\}_m$, we can find m so that $f(Y \cap V_m) \subseteq Z \setminus f(Y \cap \overline{W}^{cY})$. This leads to a contradiction, however, since $p \in W \cap V_m$, and so $Y \cap W \cap V_m \neq \emptyset$.

Let X be a hemicompact space (i.e. in the family of all compact subspaces of X ordered by inclusion, there exists a countable cofinal subfamily [En]). If X is also locally compact, then there exists a sequence $\{C_n\}_n$ of compact sets covering X such that $C_n \subseteq \operatorname{int} C_{n+1}$ (assume $C_0 = \emptyset$). By Proposition 2.2, \mathcal{P} with the Fell topology restricted from $CL(X \times cY)$ coincides with τ_C . Then \mathcal{H} , the closure of \mathcal{P} in $(CL(X \times cY), \tau_F)$, is locally compact and hence an open subspace of its Alexandroff one-point compactification $\alpha \mathcal{H}$.

Given a sequence $\{\mathcal{V}_m\}_m$ of cY-open covers of $Y, m, n \in \omega$, a finite (possibly empty) collection \mathcal{U} of nonempty X-open subsets of C_{n+1} , and $\varphi : \mathcal{U} \to \mathcal{V}_m$, the set

$$\begin{split} H_{m,n}(\mathcal{U},\varphi) &= \\ \mathcal{H} \cap (((C_n \setminus \cup \mathcal{U}) \times cY)^c)^+ \cap \bigcap_{U \in \mathcal{U}} ((U \times cY)^- \cap ((\overline{U} \times (cY \setminus \varphi(U)))^c)^+) \end{split}$$

is open in $\alpha \mathcal{H}$. Let $\mathcal{H}_{m,n}$ be the collection of all these $H_{m,n}(\mathcal{U}, \varphi)$'s. Note that $f \in \mathcal{P} \cap H_{m,n}(\mathcal{U}, \varphi)$ if and only if the following conditions are satisfied (denote B = dom f):

(i) $B \cap C_n \subseteq \bigcup \mathcal{U}$,

(ii)
$$B \cap U \neq \emptyset$$
 for all $U \in \mathcal{U}$,

(iii) $f(B \cap \overline{U}) \subseteq \varphi(U)$ for all $U \in \mathcal{U}$.

We are now ready to prove some of our main results:

Theorem 3.1. Let X be locally compact and hemicompact.

- (i) If Y is Čech-complete with a G_{δ} -diagonal, then (\mathcal{P}, τ_C) is Čech-complete.
- (ii) If Y is a cp-space with a G_{δ} -diagonal, then (\mathcal{P}, τ_C) is a p-space.

Proof. (i) We will show that \mathcal{P} is G_{δ} in $\alpha \mathcal{H}$: let $\{\mathcal{V}_m\}_m$ be a sequence of covers of Y consisting of cY-open sets that witnesses both Čech-completeness and the G_{δ} -diagonal property of Y. We claim that

(*)
$$\mathcal{P} = \bigcap_{m,n\in\omega} (\bigcup \mathcal{H}_{m,n}).$$

Indeed, first take $f \in \mathcal{P}$, $m, n \in \omega$, and denote B = dom f. If $B \cap C_n = \emptyset$, then $f \in H_{m,n}(\emptyset, \emptyset) \in \mathcal{H}_{m,n}$. If $B \cap C_n \neq \emptyset$, then by continuity of f, and compactness of $B \cap C_n$, there are finite families \mathcal{U} of X-open subsets of C_{n+1} and $\mathcal{W} \subseteq \mathcal{V}_m$ such that $B \cap C_n \subseteq \cup \mathcal{U}$, and for every $U \in \mathcal{U}$, $U \cap B \neq \emptyset$ and there is $W_U \in \mathcal{W}$ with $f(\overline{U} \cap B) \subseteq W_U$. Define $\varphi : \mathcal{U} \to \mathcal{V}_m$ via $\varphi(U) = W_U$ for every $U \in \mathcal{U}$. Then $f \in H_{m,n}(\mathcal{U}, \varphi) \in \mathcal{H}_{m,n}$.

Conversely, let $D \in \bigcap_{m,n\in\omega} (\bigcup \mathcal{H}_{m,n})$. We will show that for every $x \in p_X(D)$, $D[x] \subseteq Y$ and D[x] is a singleton, so D is a closed graph of a function with a compact range; thus, $D \in \mathcal{P}$. Indeed, fix $m \in \omega$ and find $n \in \omega$ such that $x \in C_n$. There is a finite family \mathcal{U} of nonempty X-open subsets of C_{n+1} , and $\varphi : \mathcal{U} \to \mathcal{V}_m$ such that $D \in H_{m,n}(\mathcal{U}, \varphi)$.

Then there is a $U \in \mathcal{U}$ containing x (otherwise, $H_{m,n}(\mathcal{U}, \varphi) \subseteq ((\{x\} \times cY)^c)^+ \cap \mathcal{H}$, and $x \notin p_X(D)$, so $D[x] \subseteq \varphi(U) \subseteq \cup \mathcal{V}_m$; thus, $D[x] \subseteq \bigcap_m (\cup \mathcal{V}_m) = Y$ by Čechcompleteness of Y. To prove that D[x] is a singleton, suppose there are distinct $z, y \in D[x]$. Then, by the G_{δ} -diagonal property, $z \in Y \cap \bigcap_m \operatorname{St}(y, \mathcal{V}_m) = \{y\}$, a contradiction.

(ii) Let $\{\mathcal{V}_m\}_m$ be a sequence of covers of Y consisting of cY-open sets that witness both the cp-space and G_{δ} -diagonal property of Y. We claim that

$$\{\mathcal{H}_{m,n}:m,n\in\omega\}$$

is a feathering for \mathcal{P} : to show that each $\mathcal{H}_{m,n}$ is an $\alpha \mathcal{H}$ -open cover of \mathcal{P} , we can argue as in the first inclusion of (*).

Now choose $f_0 \in \mathcal{P}$ with $B_0 = dom f_0$, and consider $D \in \bigcap_{m,n} \operatorname{St}(f_0, \mathcal{H}_{m,n})$. As in (i), it suffices to show that for every $x \in p_X(D)$, $D[x] \subseteq Y$, and D[x] is a singleton: let $n \in \omega$ be such that $x \in C_n$. For every $m \in \omega$ there is a finite family \mathcal{U} of nonempty X-open subsets of C_{n+1} and a $\varphi : \mathcal{U} \to \mathcal{V}_m$ such that $D, f_0 \in H_{m,n}(\mathcal{U}, \varphi)$. Then B_0 intersects every element of \mathcal{U} , and there is a $U \in \mathcal{U}$ containing x, so we have

$$D[x] \cup f_0(B_0 \cap \overline{U}) \subseteq \varphi(U) \in \mathcal{V}_m.$$

Consequently, by the cp-space property of Y,

$$D[x] \subseteq \bigcap_{m} \operatorname{St}(f_0(B_0 \cap C_{n+1}), \mathcal{V}_m) \subseteq Y.$$

To prove that D[x] is a singleton, we can use the argument from (i).

A sieve (cf. [Gr]) of Y in cY is a pair (G, T), where (T, <) is an indexing tree of height ω , and G is a decreasing function from T into the nonempty cY-open sets (i.e. $t \leq t'$ implies $G(t) \supseteq G(t')$) such that the sets corresponding to the initial level of T cover Y, and for each $t \in T$,

$$G(t) \cap Y = \bigcup \{ G(t') \cap Y : t' \text{ is an immediate successor of } t \}.$$

A thread of the sieve (G, T) is the *G*-image of an infinite branch of *T*. If *Y* is a W_{δ} subset of cY - i.e. there is a sieve of *Y* in cY each thread of which intersects in a

(nonempty) subset of Y [CCN] - then Y is called *sieve complete* (the term was first used in [Mi1], but monotonically Čech complete [CCN], and satisfying Condition \mathcal{K} [WW] was also used; see also [Te]). Note that sieve completeness is independent of the compactification cY [CCN, Proposition 2.11]. It is known that sieve complete spaces are the continuous open images of Čech-complete spaces [WW], so Čechcomplete spaces are sieve complete; on the other hand, paracompact sieve complete spaces are Čech-complete [Mi1]. A space Y has a W_{δ} -diagonal [CCN], provided it has a sieve in cY, such that if $\{V_m\}_m$ is any thread of it, and $y \in \bigcap_m V_m \cap Y$, then $\{y\} = \bigcap_m V_m \cap Y$. If Y has a G_{δ} -diagonal, it has a W_{δ} -diagonal as well.

Theorem 3.2. Let X be locally compact and hemicompact. If Y is sieve complete with a W_{δ} -diagonal, then (\mathcal{P}, τ_C) is sieve complete.

Proof. Let (G,T) be a sieve of Y in cY witnessing both sieve completeness and the W_{δ} -diagonal property of Y. Let T_m stand for the *m*-th level of T, and denote $\mathcal{V}_m = \{G(t) : t \in T_m\}$ for all m. Inductively define a tree S, and a function H from S to the nonempty $\alpha \mathcal{H}$ -open sets as follows: $S = \bigcup_m S_m$ will be a subtree of $\mathcal{P}^{<\omega}$, the tree of finite sequences of points of \mathcal{P} , where $S_m \subseteq \mathcal{P}^m$ is the *m*-th level of S. Let $S_0 = \{\emptyset\}$, and put $H(\emptyset) = H_{0,0}(\emptyset, \emptyset) = \mathcal{H}$.

Let $S_1 = \{(f) : f \in \mathcal{P}\}$. To define H(f) for $f \in \mathcal{P}$, first find the smallest n for which $C_n \cap dom f \neq \emptyset$, and using compactness of $C_n \cap dom f$, get appropriate \mathcal{U}, φ such that $f \in H_{1,n}(\mathcal{U}, \varphi)$. Finally, let H(f) be an $\alpha \mathcal{H}$ -open set such that

$$f \in H(f) \subseteq \overline{H(f)}^{\alpha \mathcal{H}} \subseteq H_{1,n}(\mathcal{U},\varphi).$$

Fix $m \geq 1$. Assume that S_m has been defined, and for each $s \in S_m$, H(s) has been chosen so that $\overline{H(s)}^{\alpha \mathcal{H}} \subseteq H(s') \cap H_{m,n_s}(\mathcal{U}_s,\varphi_s)$ for some nonempty \mathcal{U}_s,φ_s , where $s' \in S_{m-1}$ is the predecessor of s, and $n_s = n_{s'} + 1$. Given $s \in S_m$, $(s, f) \in \mathcal{P}^{m+1}$ will be an immediate successor of s in S, if $f \in \mathcal{P} \cap H(s)$, so

$$S_{m+1} = \{(s, f) : s \in S_m, f \in \mathcal{P} \cap H(s)\}$$

Let $(s, f) \in S_{m+1}$, and B = dom f. Then $f \in H_{m,n_s}(\mathcal{U}_s, \varphi_s)$, so $B \cap C_{n_s} \subseteq \bigcup \mathcal{U}_s$, and for all $U \in \mathcal{U}_s$, $U \subseteq C_{n_s+1}$, $B \cap U \neq \emptyset$, and $f(B \cap \overline{U}) \subseteq \varphi_s(U)$. Fix $U \in \mathcal{U}_s$; then $\varphi_s(U) = G(t)$ for some $t \in T_m$. Consider the collection

$$\mathcal{W}(U) = \{ G(t') \in \mathcal{V}_{m+1} : t' \in T_{m+1}, t' > t \},\$$

for which $Y \cap \varphi_s(U) = \bigcup \{Y \cap W : W \in \mathcal{W}(U)\}$, and $W \subseteq \varphi_s(U)$ for all $W \in \mathcal{W}(U)$. Since $\bigcup_{U \in \mathcal{U}_s} \mathcal{W}(U)$ is a *cY*-open cover of $f(B \cap C_{n_s})$, each $x \in B \cap C_{n_s}$ has an *X*-open neighborhood O_x so that $\overline{O_x} \subseteq U$ for some $U \in \mathcal{U}_s$, and $f(B \cap \overline{O_x}) \subseteq W$ for some $W \in \mathcal{W}(U)$.

By compactness of $B \cap C_{n_s}$, we can find $x_0, \ldots, x_p \in B \cap C_{n_s}$ such that $B \cap C_{n_s} \subseteq \bigcup_{i \leq p} O_{x_i}$, and for all $i \leq p$, there is some $W_i \in \bigcup_{U \in \mathcal{U}_s} \mathcal{W}(U)$ with $f(B \cap \overline{O_{x_i}}) \subseteq W_i$. Denote

$$C = C_{n_s+1} \setminus \bigcup_{i \le p} O_{x_i},$$

and let $\mathcal{N} = \emptyset$, if $B \cap C = \emptyset$. If $B \cap C \neq \emptyset$ then, because \mathcal{V}_{m+1} covers Y, each $z \in B \cap C$ has an X-open neighborhood N_z such that $\overline{N_z} \subseteq \operatorname{int} C_{n_s+2} \setminus C_{n_s}$, and $f(B \cap \overline{N_z}) \subseteq V$ for some $V \in \mathcal{V}_{m+1}$. By compactness of $B \cap C$, we can find $z_0, \ldots, z_r \in B \cap C$ such that $B \cap C \subseteq \bigcup_{j \leq r} N_j$, and for all $j \leq r$ there is some $V_j \in \mathcal{V}_{m+1}$ with $f(B \cap \overline{N_{z_j}}) \subseteq V_j$; put $\mathcal{N} = \{N_{z_j} : j \leq r\}$.

Define $\mathcal{U}_{(s,f)} = \{O_{x_i} : i \leq p\} \cup \mathcal{N}$, and

$$\varphi_{(s,f)}(A) = \begin{cases} W_i, & \text{if } A = O_{x_i} \text{ for some } i \le p, \\ V_j, & \text{if } A = N_{z_j} \text{ for some } j \le r. \end{cases}$$

It is clear from the above construction, that $f \in H_{m+1,n_s+1}(\mathcal{U}_{(s,f)},\varphi_{(s,f)})$, so we can find an $\alpha \mathcal{H}$ -open set H(s,f) such that putting $n_{(s,f)} = n_s + 1$ we have

$$f \in H(s,f) \subseteq \overline{H(s,f)}^{\alpha \mathcal{H}} \subseteq H(s) \cap H_{m+1,n_{(s,f)}}(\mathcal{U}_{(s,f)},\varphi_{(s,f)})$$

Then $H(s, f) \subseteq H(s)$, and $\mathcal{P} \cap H(s) = \bigcup \{\mathcal{P} \cap H(s, f) : f \in \mathcal{P} \cap H(s)\}$, so (H, S) is a sieve of \mathcal{P} in $\alpha \mathcal{H}$.

Finally, let $\{H(s_m) : m \ge 1\}$ be a thread in (H, S), where for all $m, s_m \in S_m$, and s_{m+1} is an immediate successor of s_m in S. Let \mathcal{U}_{s_m} be a finite collection of X-open sets, and $\varphi_{s_m} : \mathcal{U}_{s_m} \to \mathcal{V}_m$ such that

$$\overline{H(s_m)}^{\alpha \mathcal{H}} \subseteq H(s_{m-1}) \cap H_{m,n_{s_m}}(\mathcal{U}_{s_m},\varphi_{s_m}).$$

Since $\alpha \mathcal{H}$ is compact, then $\bigcap_m H(s_m) \neq \emptyset$, so we can choose $D \in \bigcap_m H(s_m)$, and $x \in p_X(D)$. Find the first *m* with $x \in C_{n_{s_m}}$. Then the set

$$T'_{k} = \{t \in T_{k} : \exists U \in \mathcal{U}_{s_{k}} \text{ with } x \in U \text{ and } G(t) = \varphi_{s_{k}}(U)\}$$

is nonempty for each $k \geq m$. Moreover, if $t \in T'_k$ for some k > m, and $U \in \mathcal{U}_{s_k}$ is such that $G(t) = \varphi_{s_k}(U)$, then by the definition of \mathcal{U}_{s_k} , either U is disjoint from $C_{s_{k-1}}$, which is not the case, since $x \in C_{s_m} \cap U \subseteq C_{s_{k-1}} \cap U$, or there exists a $U' \in \mathcal{U}_{s_{k-1}}$ with $U \subseteq U'$ and $G(t) \in \mathcal{W}(U')$. Then there is $t' \in T_{k-1}$ with t' < t, and $G(t') = \varphi_{s_{k-1}}(U')$; thus, $t' \in T'_{k-1}$. It means that $T' = \bigcup_{k \geq m} T'_k$ is a subtree of T of height ω , which is clearly finite splitting (i.e. each node in T' has only finitely many immediate successors - see [Ke]). By König's Lemma, T' has an infinite branch

$$t_m < \cdots < t_k < t_{k+1} < \dots$$

where $t_k \in T'_k$ for each $k \ge m$. Let $U_k \in \mathcal{U}_{s_k}$ be such that $\varphi_{s_k}(U_k) = G(t_k)$. Then $x \in U_k$, and $D[x] \subseteq \varphi_{s_k}(U_k)$ for all $k \ge m$, so $\{\varphi_{s_k}(U_k) : k \ge m\}$ is part of a thread of (G, T) containing D(x). This thread is intersecting in a singleton $y \in Y$, since Y is sieve complete with a W_δ -diagonal. It follows, that y = D(x); thus, $D \in \mathcal{P}$. \Box

A space Y is a q-space [Mi2, Ch], if for each $y \in Y$ there is a sequence $\{U_n\}_n$ of neighborhoods of y such that whenever $y_n \in U_n$, the sequence $\{y_n\}_n$ has a cluster point. Note that sieve complete, as well as, p-spaces are q-spaces.

Proposition 3.3. Let Y be a non-countably compact space. If (\mathcal{P}, τ_C) is a q-space, then X is hemicompact.

Proof. Let $y \in Y$, and define f(x) = y for each $x \in X$. Let $\mathcal{U}_n = \bigcap_{p \in P_n} [U_n^p] \cap \bigcap_{r \in R_n} [K_n^r : I_n^r]$ (where P_n, R_n are finite sets) be a sequence of τ_C -neighborhoods of f satisfying the q-space property at f.

For every $p \in P_n$ choose $x_n^p \in U_n^p$ and put $K_n = \{x_n^p : p \in P_n\} \cup \bigcup_{r \in R_n} K_n^r$. Then K_n is compact for every n, further, $\{K_n\}_n$ is a countable cofinal subfamily of K(X): otherwise, let $K \in K(X)$ be such that for every $n \in \omega$ there is $k_n \in K \setminus K_n$. Let $\{y_n\}_n$ be a sequence without a cluster point in Y. Define $f_n : K_n \cup \{k_n\} \to Y$ via $f_n(x) = f(x)$ for $x \in K_n$, and $f_n(k_n) = y_n$. It follows, that the sequence $f_n \in \mathcal{U}_n$ clusters in some $h \in \mathcal{P}$. The set $h(K \cap dom h)$ is compact, so there is an open $I \subseteq Y$ and $n_0 \in \omega$ such that $h(K \cap dom h) \subseteq I$, and $y_n \notin I$ for every $n \ge n_0$. Then [K:I] is a τ_C -neighborhood of h, and for every $n \ge n_0$, $f_n \notin [K:I]$, which is a contradiction.

Remark 3.4. If Y is countably compact, the above proposition may fail: indeed, if $Y = \{0, 1\}$ and X is an uncountable discrete space, then (\mathcal{P}, τ_C) is a closed subspace of $(CL(X \times Y), \tau_F)$, so it is Čech-complete, but X is not hemicompact. \Box

Theorem 3.5. Let Y be a non-countably compact space with a G_{δ} -diagonal (W_{δ} -diagonal). Then the following are equivalent:

- (i) (\mathcal{P}, τ_C) is Čech-complete (sieve complete);
- (ii) X is locally compact, Lindelöf, and Y is Cech-complete (sieve complete).

Proof. (i) \Rightarrow (ii) By Proposition 2.4, X is locally compact, by Proposition 3.3, X is hemicompact, and hence Lindelöf. Moreover, Y is Čech-complete (sieve complete) by Proposition 2.1(ii).

(ii) \Rightarrow (i) See Theorem 3.1(i), and Theorem 3.2.

Theorem 3.6. Let Y be a non-compact, paracompact space with a G_{δ} -diagonal. Then the following are equivalent:

- (i) (\mathcal{P}, τ_C) is a *p*-space;
- (ii) X is locally compact, Lindelöf, and Y is metrizable.

Proof. (i) \Rightarrow (ii) By Proposition 2.4, X is locally compact, by Proposition 3.3, X is hemicompact, and hence Lindelöf. Moreover, Y is a *p*-space by Proposition 2.1(ii), and a paracompact *p*-space with a G_{δ} -diagonal is metrizable [Gr].

 $(ii) \Rightarrow (i)$ See Theorem 3.1(ii).

The following theorem is an extension of [Ho2, Theorem 3.3] (for another proof see [NZ]):

Theorem 3.7. The following are equivalent:

- (i) (\mathcal{P}, τ_C) is completely metrizable;
- (ii) X is hemicompact, metrizable, and Y is completely metrizable.

Proof. (i) \Rightarrow (ii) Y is completely metrizable by Proposition 2.1(ii); further, metrizability of (\mathcal{P}, τ_C) implies metrizability of $(CL(X), \tau_F)$ (see Proposition 2.1(i)), which in turn is equivalent to hemicompactness and metrizability of X [Be, Theorem 5.1.5].

(ii) \Rightarrow (i) (\mathcal{P}, τ_C) is metrizable by [Ho2, Theorem 2.4], and Čech-complete by our Theorem 3.1, hence it is completely metrizable [En, Theorem 4.3.26].

Finally, using the argument of [Ho2, Theorem 3.4], we can fully characterize Polishness of (\mathcal{P}, τ_C) :

Theorem 3.8. The following are equivalent:

- (i) (\mathcal{P}, τ_C) is Polish;
- (ii) X is hemicompact, metrizable, and Y is Polish.

4. Čech-completeness and related properties of the compact-open topology on C(X, Y)

Properties of the compact-open topology τ_{CO} are well established for $Y = \mathbb{R}$, or more generally for a locally convex completely metrizable Y (cf. [MN1, En], or more recently [GRe]). This restriction on Y is usually required to use some extension theorem (Tietze, Dugundji) in order to obtain the desired result. As we have shown in previous sections, one can get by in (\mathcal{P}, τ_C) without extension theorems, and with considerably more general Y. On the other side, $(C(X, Y), \tau_{CO})$ embeds as a closed subset in (\mathcal{P}, τ_C) , which leads to results on τ_{CO} with less restricted Y. For theorems of this general nature see e.g. [Are], [Mi3], [OM] or [SM].

To be more specific, note that if X is a hemicompact k-space and Y is completely metrizable, then $(C(X, Y), \tau_{CO})$ is completely metrizable [MN1], and hence Čechcomplete, sieve complete, as well as a p-space. As a corollary to Theorem 3.2 (resp. Theorem 3.1), we can generalize this result to a sieve complete (resp. Čechcomplete, cp-space) Y with a W_{δ} -diagonal (resp. G_{δ} -diagonal). For another proof see [HZ2]:

Theorem 4.1. Let X be a hemicompact k-space, and Y be sieve complete (Čechcomplete, cp-space, resp.) with a W_{δ} -diagonal (G_{δ} -diagonal, resp.).

Then $(C(X,Y), \tau_{CO})$ is sieve complete (Čech-complete, p-space, resp.).

Proof. Let $\{C_n\}_n$ be a cofinal collection in K(X), and $Z = \bigoplus_n C_n$ the topological sum of the C_n 's. Then Z is hemicompact, locally compact and, since X is a k-space, the natural mapping $\psi: Z \to X$ is compact-covering and quotient. Consequently, the map $\psi^*: (C(X,Y), \tau_{CO}) \to (C(Z,Y), \tau_{CO})$, defined via

$$\psi^*(f) = f \circ \psi$$
, for all $f \in C(X, Y)$,

is a closed embedding [MN1, Corollary 2.2.8(b), and Theorem 2.2.10]. It follows from Theorem 3.2 (Theorem 3.1, resp.), and Proposition 2.1(ii), that $(C(Z,Y), \tau_{CO})$ is sieve complete (Čech-complete, *p*-space, resp.), as is $(C(X,Y), \tau_{CO})$, which sits in $(C(Z,Y), \tau_{CO})$ as a closed subspace.

5. Paracompactness and related properties of (\mathcal{P}, τ_C)

Since a paracompact p-space with a G_{δ} -diagonal is metrizable [Gr], we have

Lemma 5.1. A locally compact, Lindelöf space with a G_{δ} -diagonal is metrizable.

Theorem 5.2. Let Y be a Polish space. The following are equivalent:

- (i) (\mathcal{P}, τ_C) is Polish;
- (ii) (\mathcal{P}, τ_C) is Lindelöf;
- (iii) X is hemicompact, and metrizable.

Proof. For (iii) \Leftrightarrow (i) see Theorem 3.8. As for (ii) \Rightarrow (iii), observe that (\mathcal{P}, τ_C) Hausdorff implies X is locally compact (Proposition 2.4), so by Proposition 2.1(i), $(CL(X), \tau_F)$ is Lindelöf, and so is X. This in turn implies that $(C(X, Y), \tau_{CO})$ is metrizable [MN1, Exercise 4.9.1] and, by Proposition 2.1(ii), Lindelöf; thus, 2nd

countable. Then, by [MN1, Exercise 4.9.7(a)], X is an \aleph_0 -space (i.e. it has a countable k-network [Gr]). Finally, since an \aleph_0 -space has a G_{δ} -diagonal, X is metrizable by Lemma 5.1.

Proposition 5.3. Let Y be sieve complete (Čech-complete, cp-space, resp.) with a W_{δ} -diagonal (G_{δ} -diagonal, resp.). If (\mathcal{P}, τ_C) is normal, then (\mathcal{P}, τ_C) is sieve complete (Čech-complete, a p-space, resp.).

Proof. $(CL(X), \tau_F)$ is normal since, by Proposition 2.4 and Proposition 2.1(i), it embeds as a closed subset in (\mathcal{P}, τ_C) , so X is locally compact and hemicompact [HLP]. By Theorem 3.2 (Theorem 3.1), (\mathcal{P}, τ_C) is sieve complete (Čech-complete, a *p*-space, resp.).

If we restrict our attention to spaces with G_{δ} -diagonals, it is possible to extend Theorem 5.2:

Theorem 5.4. Let X have a G_{δ} -diagonal, and Y be a non-compact Polish space. Then the following are equivalent:

- (i) (\mathcal{P}, τ_C) is Polish;
- (ii) (\mathcal{P}, τ_C) is normal;
- (iii) X is locally compact, and Lindelöf.

Proof. (iii) \Rightarrow (i) follows from Lemma 5.1, and Theorem 3.8. (ii) \Rightarrow (iii) follows from Proposition 5.3, and Theorem 3.5.

Proposition 5.5. (\mathcal{P}, τ_C) is paracompact if and only if it is Lindelöf, if either of the following is satisfied:

- (i) X has a G_{δ} -diagonal and Y is 2nd countable;
- (ii) X, Y are separable.

Proof. The nontrivial part is to prove that paracompactness implies Lindelöfness. Paracompactness of (\mathcal{P}, τ_C) implies paracompactness of $(CL(X), \tau_F)$ (by Proposition 2.4 and Proposition 2.1(i)), so X is locally compact and Lindelöf [HLP].

Then by Lemma 5.1, (i) implies (ii), so it suffices to prove Lindelöfness of (\mathcal{P}, τ_C) for (ii): let D_X, D_Y be countable dense sets in X and Y, respectively. We will be done if we show that (\mathcal{P}, τ_C) is separable: by [HZ1, Proposition 2.1(iii)], the collection of sets

$$[K_0:\emptyset] \cap \bigcap_{i \le n} [U_i] \cap [\overline{U_i}:I_i],$$

with $n \geq 1, K_0, \overline{U_i} \in K(X), \emptyset \neq U_i \subseteq X$ open, K_0, U_i pairwise disjoint for $i \leq n$ and $\emptyset \neq I_i \subseteq Y$ open $(i \leq n)$, forms a π -base for τ_C . Using this π -base, it is not hard to verify that the collection of continuous partial maps with values in D_Y , the domains of which run over the finite subsets of D_X , is dense (and countable) in (\mathcal{P}, τ_C) .

Remark 5.6. Note that paracompactness of (\mathcal{P}, τ_C) is not equivalent to Lindelöfness and local compactness of X (as Theorem 5.4 would suggest), since otherwise (comparing Theorem 5.2 and Proposition 5.5(ii)), a separable, locally compact, Lindelöf space would be metrizable (which is not the case, just consider $\beta\omega$). The following results suggest rather, that paracompactness of (\mathcal{P}, τ_C) could be closer to metrizability of (\mathcal{P}, τ_C) . **Proposition 5.7.** Let Y be a p-space with a G_{δ} -diagonal. The following are equivalent:

- (i) (\mathcal{P}, τ_C) is paracompact;
- (ii) (\mathcal{P}, τ_C) is a paracompact p-space;

Proof. (i) \Rightarrow (ii) follows from Proposition 5.3, since Y is paracompact by Proposition 2.1(ii), and a paracompact *p*-space is a *cp*-space.

Theorem 5.8. Let Y be a p-space. The following are equivalent:

- (i) (\mathcal{P}, τ_C) is paracompact with a G_{δ} -diagonal;
- (ii) (\mathcal{P}, τ_C) is metrizable;
- (iii) X is hemicompact metrizable, and Y is metrizable.

Proof. (i) \Rightarrow (ii) It follows from Proposition 2.1(ii), that Y has a G_{δ} -diagonal, so by Proposition 5.7, (\mathcal{P}, τ_C) is a paracompact *p*-space with a G_{δ} -diagonal, and hence, metrizable [Gr]. The remaining implications follow from [Ho2, Theorem 2.4]. \Box

The following lemma is needed to prove our last characterization of paracompactness of (\mathcal{P}, τ_C) , but it may be of independent interest:

Lemma 5.9. Let X, Y be such that partial continuous functions with closed domains are continuously extendable over X; moreover, suppose that there exists an open base \mathcal{V} for Y closed under finite intersections such that for each nonempty $K \in K(X)$ and $V \in \mathcal{V}$, every function $f \in C(K, V)$ is extendable to some $f^* \in C(X, V)$.

Then the set-valued function $\psi : (\mathcal{P}, \tau_C) \rightrightarrows (C(X, Y), \tau_{CO})$ defined via

$$\psi(f) = \{g \in C(X, Y) : g \upharpoonright_{domf} = f\}$$

is lower semicontinuous.

Proof. The restriction mapping

 $\eta: (CL(X), \tau_F) \times (C(X, Y), \tau_{CO}) \to (\mathcal{P}, \tau_C),$

defined via $\eta(B, f) = f \upharpoonright_B$, is an open mapping (see [HZ1, Proposition 3.3]). It suffices to notice that $\psi^{-1}(\mathbf{V}) = \eta(CL(X) \times \mathbf{V}) \in \tau_C$ for any $\mathbf{V} \in \tau_{CO}$.

Theorem 5.10. Let Y be a Frèchet space. The following are equivalent:

- (i) (\mathcal{P}, τ_C) is paracompact;
- (ii) X is locally compact, Lindelöf, and there exists a continuous mapping $\varphi : (\mathcal{P}, \tau_C) \to (C(X, Y), \tau_{CO})$ such that $\varphi(f)$ is a continuous extension of $f \in \mathcal{P}$;
- (iii) X is locally compact, Lindelöf, and (\mathcal{P}, τ_C) embeds as a closed subset in $(CL(X), \tau_F) \times (C(X, Y), \tau_{CO}).$

Proof. (i) \Rightarrow (ii) X is locally compact and Lindelöf by [HLP], since $(CL(X), \tau_F)$ is paracompact by Proposition 2.4, and Proposition 2.1(i). Now use Lemma 5.9 along with Michael's Selection Theorem, as in the proof of [Ho2, Theorem 4.1], to finish the proof.

(ii) \Rightarrow (iii) See the proof of [Ho2, Theorem 4.2].

(iii) \Rightarrow (i) If X is locally compact and Lindelöf, then $(CL(X), \tau_F)$ is locally compact, paracompact [HLP] and $(C(X, Y), \tau_{CO})$ is metrizable [MN1]; hence, the product $(CL(X), \tau_F) \times (C(X, Y), \tau_{CO})$ is paracompact [En, Exercise 5.5.5.(c)].

Paracompactness and normality have been studied for the Fell topology [HLP], as well as for the compact-open topology [Po],[OM]. For the generalized compactopen topology we only have the above partial results, so we ask:

Problem 5.11. Characterize paracompactness (normality) of (\mathcal{P}, τ_C) in terms of X and Y. In particular, is paracompactness (normality) of (\mathcal{P}, τ_C) equivalent to its metrizability for some reasonable Y (say $Y = \mathbb{R}$)?

Acknowledgement

The authors are grateful for the helpful comments of the referees (especially concerning Theorem 3.2).

References

- [AA] A. Abd-Allah, Partial maps in algebra and topology, Ph.D. thesis, University of Wales, 1979.
- [AB] A. Abd-Allah and R. Brown, A compact-open topology on partial maps with open domains, J. London Math. Soc. 21 (1980), 480-486.
- [Are] R. Arens, A topology of transformations, Annals of Math. 47 (1946), 480-495.
- [Arh] A. V. Arhangel'skiĭA class of spaces containing all metric and locally compact spaces, Mat. Sb. 67 (1970), 55-58.
- [Ba] J. Back, Concepts of similarity for utility functions, J. of Math. Economics 1 (1986), 721-727.
- [BB] P. I. Booth and R. Brown, Spaces of partial maps, fibered mapping spaces and the compact open topology, Topology Appl. 8 (1978), 181-195.
- [BC] P. Brandi and R. Ceppitelli, Existence, uniqueness and continuous dependence for hereditary differential equations, J. Diff. Equations 81 (1989), 317-339.
- [BCH1] P. Brandi, R. Ceppitelli and Ľ. Holá, Topological properties of a new graph topology, J. Convex Anal. 5 (1998), 1-12.
- [BCH2] P. Brandi, R. Ceppitelli and L. Holá, Kuratowski convergence on compacta and Hausdorff metric convergence on compacta, Comment. Math. Univ. Carolin. 40 (1999), 309-318.
- [Be] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer, Dordrecht, 1993.
- [CCN] J. Chaber, M. M. Coban and K. Nagami, On monotonic generalizations of Moore spaces, Čech complete spaces and p-spaces, Fund. Math. 84 (1974), 107-119.
- [Ch] T. Chiba, On q-spaces, Proc. Japan Acad. 45 (1969), 453-456.
- [DN1] A. Di Concilio and S. A. Naimpally, Proximal set-open topologies and partial maps, Acta Math. Hung. 88 (2000), 227-237.
- [DN2] A. Di Concilio and S. A. Naimpally, Function space topologies on (partial) maps, Recent Progress in Function Spaces, Quaderni di Matematica 3, 1998.
- [En] R. Engelking, *General Topology*, Helderman, Berlin, 1989.
- [Fe] J. Fell, A Hausdorff topology for the closed subsets of locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472–476.
- [Fi] V. V. Filippov, Basic topological structures of the theory of ordinary differential equations, Topology in Nonlinear Analysis, Banach Centrum Publications 35 (1996), 171-192.
- [Gr] G. Gruenhage, Generalized metric spaces, in Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984.
- [GRe] P. M. Gartside and E. A. Reznichenko, Near metric properties of function spaces, Fund. Math. 164 (2000), 97-114.
- [HLP] E. Holá, S. Levi and J. Pelant, Normality and paracompactness of the Fell topology, Proc. Amer. Math. Soc. 127 (1999), 2193-2197.
- [HM] D. Holý and L. Matejička, C-upper semicontinuous and C*- upper semicontinuous multifunctions, Tatra Mt. Math. Publ. 34 (2006), 159-165.
- [Ho1] E. Holá, Uniformizability of the generalized compact-open topology, Tatra Mt. Math. Publ. 14 (1998), 219-224.
- [Ho2] L. Holá, Complete metrizability of generalized compact-open topology, Topology Appl. 91 (1999), 159-167.

- [HZ1] L. Holá and L. Zsilinszky, Completeness properties of the generalized compact-open topology on partial functions with closed domains, Topology Appl. 110 (2001), 303-321.
- [HZ2] E. Holá and L. Zsilinszky, Vietoris topology on partial maps with compact domains, Topology Appl., to appear.
- [Ke] A. S. Kechris Classical Descriptive Set Theory, Springer, New York, 1994.
- [KS] H. P. Künzi and L. B. Shapiro, On simultaneous extension of continuous partial functions, Proc. Amer. Math. Soc. 125 (1997), 1853-1859.
- [KT] E. Klein and A. Thompson, Theory of Correspondences, Wiley, New York, 1975.
- [Ku1] K. Kuratowski, Sur l'espace des fonctions partielles, Ann. Mat. Pura Appl. 40 (1955), 61-67.
- [Ku2] K. Kuratowski, Sur une méthode de métrisation complète de certains espaces d'ensembles compacts, Fund. Math. 43 (1956), 114-138.
- [La] H.J. Langen, Convergence of dynamic programming models, Mathematics of Operations Research 6 (1981), 493-512.
- [Mi1] E. Michael, Complete spaces and tri-quotient maps, Illinois J. Math. 21 (1977), 716-733.
- [Mi2] E. Michael, A note on closed maps and compact sets, Israel J. Math. 2 (1964), 173-176.
- [Mi3] E. Michael, ℵ₀-spaces, J. Math. Mech. **15** (1966), 983-1002.
- [MN1] R. A. McCoy and I. Ntantu, Topological properties of spaces of continuous functions, Springer-Verlag, Berlin, 1988.
- [MN2] R. A. McCoy and I. Ntantu, Completeness properties of function spaces, Topology Appl. 22 (1986), 191-206.
- [NZ] P. J. Nyikos and L. Zsilinszky, Strong α-favorability of the (generalized) compact-open topology, Atti Sem. Mat. Fis. Univ. Modena 51 (2003), 1-8.
- [OM] P. O'Meara, On paracompactness in function spaces with the compact-open topology, Proc. Am. Math. Soc.29 (1971), 183-189.
- [Po] R. Pol, Normality in function spaces, Fund. Math. 84 (1974), 145-155.
- [Se] G. R. Sell, On the Fundamental Theory of Ordinary Differential Equations, J. Differential Equations 1 (1965), 371-392.
- [SM] N. Shimane and T. Mizokami, On the embedding and developability of mapping spaces with compact-open topology, Topology Proc. 24 (1999), 313-322.
- [St] E. N. Stepanova, Extension of continuous functions and metrizability of paracompact p-spaces, Mat. Zametki 53 (1993), 92-101.
- [Te] R. Telgársky, On sieve-complete and compact-like spaces, Topology Appl. 16 (1983), 61-68.
- [Wh] W. Whitt, Continuity of Markov Processes and Dynamic Programs, Yale University, 1975.
- [WW] H. H. Wicke and J. M. Worrell, Jr., On the open continuous images of paracompact Čech-complete spaces, Pacific J. Math. 37 (1971), 265-276.
- [Za] S. K. Zaremba, Sur certaines familles de courbes en relation avec la theorie des equations differentielles, Rocznik Polskiego Tow. Matemat. 15 (1936), 83-105.

Academy of Sciences, Institute of Mathematics, Štefánikova 49, 81473 Bratislava, Slovakia

E-mail address: hola@mat.savba.sk

Department of Mathematics and Computer Science, University of North Carolina at Pembroke, Pembroke, NC 28372, USA

E-mail address: laszlo@uncp.edu

14